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Abstract
Pattern selection and competition in certain near-integrable
systems is discussed. These systems provide models for controlled
studies of low dimensional attractors in high (infinite) dimensional
systems. Four examples from damped, driven pendulum rings are
summarized in the order of increasing spatial complexity of their
chaotic attractors. These examples illustrate the use of numerical and
analytical techniques from soliton mathematics to study propertics of
chaotic attractors. In particular, the connection of (unperturbed)
homoclinic states with instabilities of spatial patterns, with

interactions between pattoerns, and as possible sources of temporal chaos

is emphasized.



I. Introduction

Complex systems often exhibit rich spatial and temporal patterns,
which possess both coherent and chaotic features. This property is
found in many physical systems (water waves, plasmas, turbulent fluids,
laser light, solid state and electronic devices), as well as in numeri-
cal simulations of partial differential equations and cellular
automata.1 Analysis of such complicated systems is extremely limited;
thus, usually one is restricted to numerical or physical observations.

Although these complex systems have high (even infinite) dimen-
sional phase spaces, their chaotic attractors are often low dimensional.
(At least this low dimensionality seems to apply to the macroscopic
transport via collective structures.) Recently theorists, using methods
from the mathematical theory of dynamical systems, have made consider-
able progress in discovering and understanding universal properties of
low dimensional systems. These theoretical developments have given
considerable insight toward the interpretation of observations of the
long time bchavior of complex systems. However, a mathematical theory
of chaotic attractors for infinite dimensional systems is still in its
infancy,

Our own recent rescarch has focused on model partial differential
equations which are far simpler than realistic physical systems, yet
complicated enough to possess low dimensional attractors in an infinite
dimensicaal state space.  Typically we study one dimensional nonlinear
wave cquations which are nearby "integrable" cequations.  These model
problems permit a detailed (at times even analytical) study of specific
properties of chaotic attractors in a high dimensional system. In

yarticular, we use these models to develop intuition about the nature of
)

ABPO11-A



the chaotic attractors and the mechanisms which cause pattern selection,
competition between patterns, and the generation of chaos. Some of
these features, which can be understood in detail for the model
problems, are rather general and will extend to more realistic systems
where such detailed investigations are impossible at present -- nor can
they be anticipated in the near future,

In this article, we will briefly describe several representative
examples, in order of the increasing spatial complexity of their attrac-
tors, which illustrate the above philosophy. The reader should consult
the references for further details. All of the examples which we
discuss here are perturbed sine-Gordon equations, which provide elegant

model problems.

IT. Homogeneously AC Driven, Damped Pendulum Ring

A concrete example is the damped, ac-driven sine-Gordon equation

under periodic boundary conditions:

¢tt = ¢xx + Sin ¢ = c[-a¢t + r SIH(Wt)l » (2-1)

¢(x + L, t) = o(x,t) (2.1bc)

(,L=0)=¢-(x) ’
bx n (2.1ic)

¢t(x,t =0) = Vin(x)

llere 0 < £ « |, and the control pzrameters are o (the strength of the
dissipation), I' (the amplitude of the ac driver), w (the frequency of
the ac driver), L (the spatial period), and the initial data (¢i“, vin)'

This equation models a chain of harmonically coupled nonlinecar pendula,
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with periodic boundary conditions describing a ring configuration. Note
that both the dissipation and driving are spatially homogeneous.
Historically this system with no spatial structure (i.e., the single
pendulum) has provided a useful model to direct and test one's under-
standing of temporal chaos in determinis-ic dynamical systems.z’3
However, these studies of the single pendulum neglect all effects of
spatial structure which, when present, can completely alter the nature
of the space-time attractor.

In numerical experimentsl"5 with weak homogeneous perturbations and
single humped initial data, the fundamental phenomenon is a resonance
between a spatially localized excitation (a '"breather") and the ac
driver. (It should be mentioned that the driving frequency w is chosen
less than unity in order tn resonate with a spatially localized breather
whose natural frequency W satisfies 0 < We . < 1. If one drives at an
w > 1, one resonates with extended phonons whose natural f{requencies
satisfy 1 < wph < w.) Above a low threshold driving strength ', the
initialized excitation adjusts, persists, and locks periodically to the
driver. As the system is further stressed by increasing I', this locked
state looses stability and more complicated spatial structures emerge.
As parametcr values are varied, the attractors can be temporally
periodic, quasi-periodic, subharmonically locked, or chaotic (with
intermittancy). Depending principally on the frequency w of the ac
driver, the chaotic dynamics is controlled by cither (i) "breather <o
kink=antikink" or (ii) "breathere» radiation" transitions. These
distinet types of nonlinecar modes (kinks, breathers, and anharmonic

radiation) classity regimes of chaotic evolution.
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The reader will notice that the terms "kink," '"breather," and
"anharmonic radiation" have not been defined. In general such defini-
tions are not precise, involving approximate techniques such as collec-
tive coordinate methods. It is especially difficult to distinguish
betweep breathers and radiation. A major advantage in working near an
integrable soliton equation is that nonlinear spectral transforms exist
which provide a precise definition and classification of these distinct
nonlinear modes. A detailed description of the application of nonlinear
spectral methods to chaotic attractors of system (2.1) may be found in
Refs. (6,7). These nonlinear spectral methods have allowed us to
demonstrate that a chaotic attractor can be comprised of a small number
of nonlinear modes which undergo collision, annihilation, nucleation,
decay, and transition between coherent and extended states. In addition
these spectral methods have identified the presence of infinite period
homoclinic orbits which are associated with transitions between the
three types of nonlinear modes. We beiieve that these homoclinic
states, although less familiar than the pendulum separatrix, play as
fundamental a role in this chaotic pendulum chain. On the one hand,
these homoclinic states are related to instabilities which generate more
complicated spatial patterns; on the other hand, the infinite period
states act as sources of extreme censitivity which can produce chaos. A
main result of the nonlincar spectral method 1s to establish numerically
the presence of frequent homoclinic crossings along the chaotic
attractor.

We describe two cases.  First, we fix the driving frequency w less

e ¢
than, aud not ncar, unity.a")’b For example, at w= 0.6 and co = 0.2,
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Then the bifurcation sequence as a function of increasing stress

parameter [ is given symbolically by

Flat 1 Excitation 2 Excitations 2~4 Excitations

Periodic Periodic Periodic Chaotic

4 Excitations)
*

Periodic

In these symbols the top entry of each ordered pair describes the
spatial structure of the attractor, while the second entry indicates its
temporal behavior.

Such bifurcation sequences may be understood as follows: As a
function of increasing stress, the flat attractor becomes unstable to a
k1(= 2n/L) Fourier excitation which saturates into an attractor with one
localized breather per spatial period. With further stress, this single
breather develops a k2(= 4n/L) instability which may saturate into two
breathers per period or one breather plus a k2 anharmonic phonon,
depending principally on dissipation strengt’.. (The first situation of
period halving into two breathers occurs at larger dissipation.) When
the attractor contains a kz anharmcnic phonon, the temporal behavior may
be quasi-periodic, subharmonically locked, or chaotic depending upon
parameter values. Similar distinctions apply as the system is further
stressed and four spatial excitations emerge (arising from a kb(= 8nt/L)
instability).

In this low freoquency (w ~ 0.6) case, the chaotic regimes are
characterized by "breather" to "kink-antikink" transitions since the
breathers which resonate with a low frequency ac driven have large

amplitude (~ 2n) and thus are near the kink-antikink threshold.
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Figure 1 shows how, in the chaotic regime, the basic coherent structures
persist, but that their phase-locking relative to each other has been
(chaotically) broken so that the structure fails to repeat by a small
amount after each driver period. We can decompose the field at each
instant of time into radiation and either two "breathers" or two "kinks"
and two "antikinks'". Furthermore, chaotic evolution of <¢(t)> (the
spatial average of ¢) through multiples of 2m does not take place via
single particle dynamics but rather through the slow diffusion of the
kinks (antikinks). Our nonlinear spectral analysis indeed confirms the
presence of a small number of localized excitations in the chaotic
attractor.6 This small number of dominating localized modes suggests
that the chaos may be governed by a low dimensional strange attractor.
We have checked that the correlation dimension6’8 is indeed low (~3).
In fact, the chaos observed in this experiment is intermittent hetween
the periodic locked states [Figure (la) and its period-4 analogue] and
the irregularly evolving unlocked states [Figure (1b)]. This inter-
mittency is reflected in the time series for the spatial averages of u
and u,, shown in Figure 2.

We close our discussion of this experiment by emphasizing that, at
these low driving frequencies, breather to kink-antikink breakup dom-
inates the chaotic attractor. A homoclinic state in the unperturbed
system is associated with this transition. This infinite period state
admits a familiar physical interpretation and provides a natural source
of sensitivity. In the next experiment, we describe a nonlinear
Schrodinger (NLS) regime which is dominated by the breather to radiation
9,10

transition, whose homoclinic states are far less familiar, but

similarly important as potential sources of NLS chaos,
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Next, we consider the second case with a higher driving frequency w

near, but still less than, unity.7’11

For example, consider w = 0.87
and ea = 0.04. (One difficulty with the experiments at smaller w (e.g.,
w~ .6) is that the interesting bifurcations occur at rather large
values of the stress parameter (el ~ 1.0). These perturbations are
large enough that analysis based on the integrable sine-Gordon theory is
not appropriate. When w is raised to> w~ .9, the interesting bifur-
cations occur at much small values of the stress parameter making
analysis based on the integrable theory more appropriate. The choice
0 «w < 1 places us in the "nonlinear Schridinger (NLS) regime". That
is, when w < 1, one can use perturbation methods to approximate a class
of equations, (which includes the sine-Gordon'equation (2.1)) by an NLS

equation:
u(x,t) = J6s[A(et,Jex)eit + c.c.]

Here the complex amplitude A(T,X) satisfies

-2iA; + Ay + 3AAFA = oA + rée-i(1-w)T

where T€ = r/2J6e. Thus, because of the generic nature of NLS, this
particular experiment at w < 1 actually applies to a wide class of
physical problems.lz-18

At these parameter values (w = 0.87, ea = .04) numerical experiments
on the initial value problem (2.1) reveal a beautiful route to chaos
with the following features:

(i) temporally - one frequency * two frequencies + chaos;

(ii) spatially - one localized "hump" > two localized "humps";
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(iii) symmetry changes and pattern competition;
(iv) low dimensional, yet chaotic, attractors;
(v) temporal intermittency, accompanied by spatial symmetry
changes.
All of this action occurs at small values of the bifurcation parameter
(el < 0.12); hence, even the chaotic system is, in some sense, near-
integrable. As the stress parameter €l increases, the attractor changes

according to the following symbolic sequence:

Flat i Excitation 2 Excitations )
Periodic Periodic Quasi-Periodic
i Excitation 2 Excitations ) 2 Excitations
-.

Periodic Quasi-Periodic Chaotic

We briefly comment on these attractors. Their space-time behavior
is depicted in Figure 3. For small driving amplitudes (0.0 < eI < 0.058),
the periodic spatial structure of the initial conditions decays as a
transient, and the attractor is an x-iadependent flat state with no
spatial structure. This state is periodic in time with the period of
the ac driver. As this flat state is further stressed (by increasing
el), it loses stability and the new attractor which emerges has the
spatial structure of one breather-like hump per spatial period riding
over a flat background. Its temporal behavior remains periodic at the
driving frequency. As el is still further increased, this state of one
hump per period loses its stability to a new attractor which has two
humps per spatial period (one being localized in space and the sccond
with the character of k = 2, extended, anharmonic radiation), and two

temporal frequencies (one at the driving frequency w = 0,87, and Lhe

ABPO11-A



10

seacond at much lower frequency). Temporally, the state can be either
quasi-periodic or subharmonically locked to the driver. With further
increase of &I, the attractor returns to the (1Ex,P) state, and then
back to (2Ex,QP) (with, again, one localized an? one extended hump). We
have not measured the structure of such "windows" in detail. As &gl
increases further, the two humps per period '"dance" irregularly, rather
than quasi-periodically, and both are localized.

With the stress parameter €[ fixed well within the chaotic region,
the spatial structure of this chaotic attractor contains two humps per
period, just as the milder (2Ex,QP) attractor. The difference between
these two spatial structures is as follows: In the quasi-periodic case
(2Ex,QP), onc of the humps is rather extended; in the chaotic cacse
(2Ex,C), both humps are localized and the state is almost spatially
period halved. These two localized humps dance, decay into radiation,
reform through radiation, focus and grow back into localized states,
develop relative center of mass motion, collide, and generally interact
chaoticatlly.

Finally, we describe the attractor at &l values just above the
chaotic threshold. Here the attractor is temporally intermittent. The
time series for the energy <H> = fdx[%¢i + %¢i + 1-cos¢] and the average
displacement <¢> = [dx¢ are depicted in Figure 3 for el = .1055. Note
the 1long, linearly growing 'laminar" regions separated by chaotic
bursts. In these laminar regions the attractor is the same as the
quasi-periodic attractor at slightly lower values of el'. 1Tt has two
humps ver period, one localized and the sccond k = 2 anharmonic radia-
tion. Temporally, it acts quasiperiodically. As the k = 2 radiation

grows and focuses into a more localized hump, the amplitude of the time
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series (Figure &4) grows linearly; finally the time series "bursts'". In
this region of time, the attractor at & = .1055 is very similar to the
chaotic attractor at higher eI’ values which was described in the pre-
ceding paragraph. It contains two localized humps which dance, decay,
and interact chaotically. As &l is increased from .1055, the percentage
of time the attractor resides in the quasi-periodic "laminar" regions
decreases, as is to be expected for intermittency.
We have claimed that the temporal bifurcation sequence is

P->QP » C. In order to deduce this, we tested the numerical data with
standard diagnostics of dynamical systems Lheory (phase planes, Poincare
sections, temporal ©power spectra, leading Lyapunov exponent, and
correlational dimension). These tests are described in detail

7,11

elsewhere. Here we restrict ourselves to the phase planes of

Figure 5, and the power spectra of Figure 6.

We note: (i) All diagnostics are c¢ansistent with the above
scenario. (ii) The correlation dimension changes with increasing el as
Lo » 2, » 3.5 > 4.3, The dimension of 3.5 occurs at cl” = .1055, where

the attractor is intermittent, and it can be interpreted as a "weighted
average" of 2 and 4.3, The rise from 2 » 3.5 occurs rapidly, between
el = 105 and " = L0155, (iii) The power spectra plots, Figuce 6, show
that the laminar region of the intermittent attractor indeed acts as if
it were quasi-periodic in Lime

Nonlinear spectral mvunurvmvn'nz‘l] show that only a few (~73 or 4)
nonlinear modes are appreciably excited = ceven when the attractor is
chaotic.  The nnmber of appreciably excited modes increases with ol

changing when the attractor changes to within the accuracy of onr study:
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(F,P): 1 Mode - k

0
(IEx,P): 2 Modes - ko; b1
(2Ex,QP): 3 Modes - ko,kz,b1

(2Ex,C): 3-4 Modes -

In this list, ko stands for flat, x independent radiation, hz represents
anharmonic extended radiation similar to coa(Z'%E Xx), and b1 denotes one
localized "breather" per period. In the case of the chaotic attractor
we do not list the type of nonlinear modes because those which are
presen. change with time; at some times (ko,kz,bl,bl) are present, while
at other times (ko,kl,kz,bl), etc. (Actually, even in the quasiperiodic
attractor, the excitation cuanges between a localized breather bl and
extended anharmonic kl radiation.) Thus, at a fixed value of the stress
el, the chaotic attractor consists in a few nonlinear modes which change
their type as a function of time. These type changes constitute
interactions and transitions between radistion and localized spatial
Btates.

Homoclinic orbits aud hemoclinic crossings: The spatially
perfodic, integrable sine=-Gordon vquutlonq'lo has homoclinic ovchits
scparating radiation modes from localized modes. In this NLS regime,
the most important homoclinic state in that which separates the breather

from an anharmonic hl phnnun.lo'll

We have used the nonlinear spectral
transform to check directly the presence of these homoclinie crossings
along this chaotic attractor. As the system iy sulticlently stressed to
access cither large amplitude quasi=periodic or chaotic attractors,

theue numerical measurements detect  frequent homoclingie crowsings of

kl o hl type, which were just discusted,
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Thus, homoclinic crossings of kl > b1 type are present, and these
are potential sources of chaos in the NLS regime. While the measurement
of such kl - bl states is straight forward . ;&th nonlinear spectral
projections, it is quite inaccessible by standard data analysis such as
spatial and temporal profiles, time series diagnostics, or linear

spectral transforms.

ITI. DC Driven, Damped Pendulum Ring

One might imagine that a homogeneously dc driven, damped ring of
pendula would exhibit little spatial structure. However, this perturba-
tion actually yielas a very rich variety of space-time patterns which
illustrate a number of important gencral phenomena including transverse
instabilities on moving interfaces and spatial competition among
nonlinear modes.

The model problem is as in equation (2.1), except that we replace
"I" sin wt" with a dc driver "ch”. Again, the nost interesting regime
is one of small dissipation (ca £ 1) where there is a distinctive
hysteresis.  Namely as 5ch is increased from O, there is no mean
rotation (<¢t>) until uch = 1, where the pendula begin to rotate homo-
gencously in space and with an oscillatory time dependence about <¢t>'
As urdc is now decrcased, a finite value of t¢t> persists for ardc <1,
accompanicd by the spontancous appearance of time dependent spatial
patterns.  The hysteresis  diagram  is organized into "steps"  (see
Figure 7.), ecach ol which is  associated with  specific  spatial
stroctures, These may  be  locked breather wave traing  (anharnonic

standing wiaves) or tranversly moving kink=antikink pairs.
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Linear stability analysis of the x-independent rotating state can
be used to predict the periodicity of the emerging structures on the
high steps very satisfactorily.19 These structures saturate in the
nonlinear sine-Gordon potential into breather wave trains, in that their
amplitudes and widths have breather characteristics. These nonlinear
structures compete for transverse space. This competition is resolved
in two distinct ways: (1) amplitude delocking of the breather wavetrain
producing breathers of difierent sizes (see Figure 8 ); or (2) breather
break-up into kink-antikink pairs. The latter occurs on the lower steps
where the '"washboard frequency is smaller; and hence, the resonant
breathers have large amplitudes and thus easily break into kink-antikink
pairs.

Clearly there are a larpgc variety of sources of low dimensional
chaos in this situation. Mathematically, hemoclinic crossings, such as
those discussed in section 2, are certainly present. Physically chaos
may be induced either through irregular jumping between steps or through

transitions between patterns on the same step.

IV. Inhomogencously AC Driven, Damped Pendulum Ring

In the previous sections we found: (i) Lhat an ac driver could
introduce a charvacteristic length scale == the width of the saturated
(breather) modes which resonate temporally with the driver; and
(ii) that competition between spatial patterns vesults when this length
scale is Inconsistent with the total length available per hump.  In Lhiy
section we consider an vxpvrimvnlzu which tunes this competition by
controlling two length scales.  This  coatrol is  achieved with a

spatially peviodie ac driving term of the torm I' sinut=gqx). Again, the
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frequency w controls the width of the saturated mode. However, now the
driver introduces an additional spatial scale, 2n/q. In effect, this
drive:r resonates with the localized breathers of frequency w and with
phonons of wave number q. If the two length scales are near
commensurate, a strony temporally periodic locking of a breather wave
train of spatial periodicity 2n/q occurs, even for very high driving
strengths (See Figure 9a). lowever, if the two length scales are
incommensurate, even very small driving strengths produce complex
space-time patterns (see Figure 9h). In this manner we can begin to

study the Lemporal evolution of complicated (chaotic?) spatial patterns.

V. Conclusions

In this article we have described scveral examples of coherence and
chaos in near integrable systems. Such models are simple enough to
allow careful, controlled studies of low dimensional chaos in a high
dimensional setting. In particular, the spatial patterns of the
attractor are closely related to solutions of the nearby integrable
system, amd a nonlincar spectral transfrm can be used to quantify
propertics of these spatial structures. In some instances such measure-
ments show that the attractor can be represented by a small number of
nonlinear modes; however, these modes must ronlinally change their type
between radiation and localized states as the phase point evolves along
the attractor. Thus, these nonlinear spectral measurements establish
the importance of soliton=radiation interactions on  the chaotic
altractor.  'n addition, these measurements detect requent homoclinic
crossings as  Lhe phase  paint  evolves along the attractor.,  The

homoclinie states are related to instabilities which generate more
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complicated spatial patterns, and they act as sources of sensitivity
which can produce temporal chaos. A main recult of the nonlinear
spectral measurements of these chaotic attractors is to establish
numerically the presence of frequent homoclinic crossings.

Of course, systems near soliton equations must have special
properties. Nevertheless, the discovery and verification of the
behavior of their chaotic attractors is much easier than in general
situations. Consider, as an example, the detailed information which we
described in this article about homoclinic crossings in the perturbed
sine-Gordon equation. Given the importance of homoclinic crosqings in
the near integrable situation, we can now begin to ask about the
possibility of homorlinic states separating distinct spatial patterns in
more general settings.

For the future, it remains to be seen which of the chaotic
phenomena identified in near soliton systems will persist in a more
general frameworx. In the ncar integrable framework, we arc continuing
to develop an analytical reduced description of attractors that
incorporates the rcelevaut small subset of inleracting nonlincar modes,

as well as the dynamical features of homoclinic orbits.

ABPOT1-A



17

References

10.

11.

12,

14.

16,

See articles in Spatio-Temporal Coherence and Chaos in Physical
Systems, Proceedings of Los Alamos Workshop, edited by
A. R. Bishop, G. Griiner, and B. Nicolaenko, Physica 23D (1986).

D. D'Humieres, M. Beasley, B. Huberman, and A. Libchaber, Phys.
Rev. A 26, 3483 (1982); J. Crutchfield, J. Farmer, and B. Huberman,
Phys. Reports 92, 42 (1983).

J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical
Systems, and Bifurcations (Springer, New York, 1983).

A. R. Bishop, K. Fesser, P. S. Lomdahl, W. C. Kerr, M. B. Williams,
and S. E. Trullinger, Phys. Rev. Lett. 50, 1095 (1983).

A. R. Bishop, K. Fesser, P. S. Lomdahl, and S. E. Trullinger,
Physica 7D, 259 (1983).

E. A. Overman, D. W. McLaughlin, and A. R. Bishop, Physica 19D, 1
(1986).

A. R. Bishop, M. G. Forest, D. W. McLaughlin, aad E. A. Overman,
Physica 23D, 293 (1986).

P. Grassberger and I. Procaccia, Phys. Rev. Lett. 50, 346 (1983).

N. Ercolani, M. G. Forest, and D. W. McLaughlin, Physica 18D, 472
(1986).

N. Ercolani, M. G. Forest, and D. W. McLaughlin, "Homoclinic Orbits
for the Periodic Sine-Gordon Equation," in preparation (1986).

A. R. Bishop, D. W. McLaughlin, and E. A. Overman, "A
Quasi-Periodic Route to Chaos in a Near Integrable PDE: llomoclinic
Crossings," Univ. of Arizona preprint (1986).

G. D. Doolen, D. F. DuBois, and H. Rose, Phys. Rev. Lett. 51, 335
(1983).

H. T. Moon, P. Huerre, and L. G. Redekopp, Physica 7D, 135 (1983).

D. W. McLaughlin, J. V. Moloney, and A, C. Newell, Phys. Rev. Lett,
51, 75 (1983).

Joo Wu, R. Keolian, and . Rudnick, Phys. Rev., Lett. 52, 1421
(1984).

H. T. Moon and M. V. Goldman, Phys. Rev. Lett. 53, 1921 (1984).

ABPOL1-A



Fig. 1

Fig. 2

Fig. 3.

FIR. ul

Fig. 5.

Figure Captions

Space-time evolutions of ¢(x,t) for the SG system through two
driving periods for eax = 0.2, w = 0.6, with periodic boundary
conditions, and driving strengths (a) el = 0.8, which results in
periodic time evolution; (b) el = 1.0, which results in chaotic

kink-antikink motions (nearly repeating every driv.ng period).

Spatial average <¢>(t) and phase-plane for the ctaotic regime at
el = 1.0 (Fig. 1b), showing intermittency: laminar regimes are

time-periodic and spatially locked 2-breather (Fig. l1a).

Space-time profiles on the attractor: (a) el = 0,050 (flat in
space, periodic in time); (b) el = 0.10% (quasi-periodic);

{c) el = 0.110 (chaotic). Note the second hump centercd at

X = +12 in the quasi-periodic case, Note also the changes in

spatianl symmetry in the chaotlec case,

The energy, H, and mean valuae of the waveform, <¢>, as a function
of time for ¢ = ,10%% (chaotic). Note the long growing laminar
region for 11,300 < t < 13,700 and the chaotic regions which bound

it.

Phase planea for o' = (a) 001 (perlodie); (b) 0.102 (quasi-
periodin); (e) 0.100 (quasi=pertodic)i (d) 0.10 (quaai=periodic),

and (e) 0,10% (chaotie).



Fig. 6.

Fig. 7.

Fig. 8.

a) The power spectra at selected values of grl.
b) Temporal power spectra for selected time intervals i{n the

chaotic regime.

A summary of numerical results. The arrows indicate the direction
in which the driving, rdc. was adiabatically changed. The x's
on the periodic steps (labeled P-N) denote where the periodic
symmetry breaks to another P-N state (see Fig. 8) when rdc is

increased, :d the o's indicate where the symmetry is regained

as T is decreased. Notice that for 0.15 < T

de < 0.18 on the

de
3K=3K step, the spatial pattern s periodie. The nomenclature
reflects an annular Josephson junction context for definiteness.

(See Pagano et al, those proceedings, for the effect of the °xxt

dissipation.)

Two cxamples of coexisting attractors on the same step: (a)
periodic 6 (P=6) standing breather train whose lengtiis compete
with higher driving, yielding the amplitude delocking 1llustrated;
(b) the P-4 state may undergo kink=-antikink breakup to give the
uK + 4K state shown, whose kinks and antikinks move transveracly.

On each of the ¢ axes, ¢ 13 given modulo 2n.



Fig. 9.

Snapshots of ¢ and °t' and power spectra, for spatially-
dependent driving T sin (wt-kx), of a sine-Gordon ring with

L =24, ea = 0.1 ana w = 0.9: (a) 2n/k = 6, T = 1.1 and (b) 2x/k
= 24, e = 0.5. 1In case (a), the resonant breather length scale
is =2%/k and locked, time-periodic resnonse occ'ures even with large
driving strengths. In case (b), the two length scales are very
different and a low-dimensional chaotic, spatially=-irregular

atiractor 1s found even at small driving strengths.
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